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Wave Optics

Chapter Ten

WAVE OPTICS

10.1  INTRODUCTION

In 1637 Descartes gave the corpuscular model of light and derived Snell’s

law. It explained the laws of reflection and refraction of light at an interface.

The corpuscular model predicted that if the ray of light (on refraction)

bends towards the normal then the speed of light would be greater in the

second medium. This corpuscular model of light was further developed

by Isaac Newton in his famous book entitled OPTICKS and because of

the tremendous popularity of this book, the corpuscular model is very

often attributed to Newton.

In 1678, the Dutch physicist Christiaan Huygens put forward the

wave theory of light – it is this wave model of light that we will discuss in

this chapter. As we will see, the wave model could satisfactorily explain

the phenomena of reflection and refraction; however, it predicted that on

refraction if the wave bends towards the normal then the speed of light

would be less in the second medium. This is in contradiction to the

prediction made by using the corpuscular model of light. It was much

later confirmed by experiments where it was shown that the speed of

light in water is less than the speed in air confirming the prediction of the

wave model; Foucault carried out this experiment in 1850.

The wave theory was not readily accepted primarily because of

Newton’s authority and also because light could travel through vacuum
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and it was felt that a wave would always require a medium to propagate

from one point to the other. However, when Thomas Young performed

his famous interference experiment in 1801, it was firmly established

that light is indeed a wave phenomenon. The wavelength of visible

light was measured and found to be extremely small; for example, the

wavelength of yellow light is about 0.6 mm. Because of the smallness

of the wavelength of visible light (in comparison to the dimensions of

typical mirrors and lenses), light can be assumed to approximately

travel in straight lines. This is the field of geometrical optics, which we

had discussed in the previous chapter. Indeed, the branch of optics in

which one completely neglects the finiteness of the wavelength is called

geometrical optics and a ray is defined as the path of energy

propagation in the limit of wavelength tending to zero.

After the interference experiment of Young in 1801, for the next 40

years or so, many experiments were carried out involving the

interference and diffraction of lightwaves; these experiments could only

be satisfactorily explained by assuming a wave model of light. Thus,

around the middle of the nineteenth century, the wave theory seemed

to be very well established. The only major difficulty was that since it

was thought that a wave required a medium for its propagation, how

could light waves propagate through vacuum. This was explained

when Maxwell put forward his famous electromagnetic theory of light.

Maxwell had developed a set of equations describing the laws of

electricity and magnetism and using these equations he derived what

is known as the wave equation from which he predicted the existence

of electromagnetic waves*. From the wave equation, Maxwell could

calculate the speed of electromagnetic waves in free space and he found

that the theoretical value was very close to the measured value of speed

of l ight. From this, he propounded that l ight must be an

electromagnetic wave. Thus, according to Maxwell, light waves are

associated with changing electric and magnetic fields; changing electric

field produces a time and space varying magnetic field and a changing

magnetic field produces a time and space varying electric field. The

changing electric and magnetic fields result in the propagation of

electromagnetic waves (or light waves) even in vacuum.

In this chapter we will first discuss the original formulation of the

Huygens principle and derive the laws of reflection and refraction. In

Sections 10.4 and 10.5, we will discuss the phenomenon of interference

which is based on the principle of superposition. In Section 10.6 we

will discuss the phenomenon of diffraction which is based on Huygens-

Fresnel principle. Finally in Section 10.7 we will discuss the

phenomenon of polarisation which is based on the fact that the light

waves are transverse electromagnetic waves.

* Maxwell had predicted the existence of electromagnetic waves around 1855; it

was much later (around 1890) that Heinrich Hertz produced radiowaves in the

laboratory. J.C. Bose and G. Marconi made practical applications of the Hertzian

waves
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10.2  HUYGENS PRINCIPLE

We would first define a wavefront: when we drop a small stone on a

calm pool of water, waves spread out from the point of impact. Every

point on the surface starts oscillating with time. At any instant, a

photograph of the surface would show circular rings on which the

disturbance is maximum. Clearly, all points on such a circle are

oscillating in phase because they are at the same distance from the

source. Such a locus of points, which oscillate in phase is called a

wavefront; thus a wavefront is defined as a surface of constant

phase. The speed with which the wavefront moves outwards from the

source is called the speed of the wave. The energy of the wave travels

in a direction perpendicular to the wavefront.

If we have a point source emitting waves uniformly in all directions,

then the locus of points which have the same amplitude and vibrate in

the same phase are spheres and we have what is known as a spherical

wave as shown in Fig. 10.1(a). At a large distance from the source, a

small portion of the sphere can be considered as a plane and we have

what is known as a plane wave [Fig. 10.1(b)].

Now, if we know the shape of the wavefront at t = 0, then Huygens

principle allows us to determine the shape of the wavefront at a later

time t. Thus, Huygens principle is essentially a geometrical construction,

which given the shape of the wafefront at any time allows us to determine

the shape of the wavefront at a later time. Let us consider a diverging

wave and let F
1
F

2
 represent a portion of the spherical wavefront at t = 0

(Fig. 10.2). Now, according to Huygens principle, each point of the

wavefront is the source of a secondary disturbance and the wavelets

emanating from these points spread out in all directions with the speed

of the wave. These wavelets emanating from the wavefront are usually

referred to as secondary wavelets and if we draw a common tangent

to all these spheres, we obtain the new position of the wavefront at a

later time.

FIGURE 10.1 (a) A
diverging spherical

wave emanating from
a point source. The

wavefronts are

spherical.

FIGURE 10.2 F
1
F

2
 represents the spherical wavefront (with O as

centre) at t = 0. The envelope of the secondary wavelets
emanating from F

1
F

2
 produces the forward moving  wavefront G

1
G

2
.

The backwave D
1
D

2
 does not exist.

FIGURE 10.1 (b) At a

large distance from
the source, a small

portion of the

spherical wave can
be approximated by a

plane wave.
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Thus, if we wish to determine the shape of the wavefront at t = t, we

draw spheres of radius vt from each point on the spherical wavefront
where v represents the speed of the waves in the medium. If we now draw

a common tangent to all these spheres, we obtain the new position of the

wavefront at t = t.  The new wavefront shown as G
1
G

2
 in Fig. 10.2 is again

spherical with point O as the centre.
The above model has one shortcoming: we also have a backwave which

is shown as D
1
D

2
 in Fig. 10.2. Huygens argued that the amplitude of the

secondary wavelets is maximum in the forward direction and zero in the

backward direction; by making this adhoc assumption, Huygens could
explain the absence of the backwave. However, this adhoc assumption is

not satisfactory and the absence of the backwave is really justified from

more rigorous wave theory.
In a similar manner, we can use Huygens principle to determine the

shape of the wavefront for a plane wave propagating through a medium
(Fig. 10.3).

10.3 REFRACTION AND REFLECTION OF

PLANE WAVES USING HUYGENS PRINCIPLE

10.3.1  Refraction of a plane wave

We will now use Huygens principle to derive the laws of refraction. Let PP¢

represent the surface separating medium 1 and medium 2, as shown in

Fig. 10.4. Let v
1
 and v

2
 represent the speed of light in medium 1 and

medium 2, respectively. We assume a plane wavefront AB propagating in
the direction A¢A incident on the interface at an angle i as shown in the

figure. Let t be the time taken by the wavefront to travel the distance BC.
Thus,

BC = v
1
 t

FIGURE 10.3

Huygens geometrical
construction for a

plane wave

propagating to the
right. F

1
 F

2
 is the

plane wavefront at

t = 0 and G
1
G

2
 is the

wavefront at a later
time t. The lines A

1
A

2
,

B
1
B

2
 … etc., are

normal to both F
1
F

2

and G
1
G

2 
and

represent rays.

FIGURE 10.4 A plane wave AB is incident at an angle i on the surface
PP¢  separating medium 1 and medium 2. The plane wave undergoes

refraction and CE represents the refracted wavefront. The figure
corresponds to v

2
 < v

1
 so that the refracted waves bends towards the

normal.
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In order to determine the shape of the refracted
wavefront, we draw a sphere of radius v2t from the point
A in the second medium (the speed of the wave in the
second medium is v2). Let CE represent a tangent plane
drawn from the point C on to the sphere. Then, AE = v2 t

and CE would represent the refracted wavefront.  If we
now consider the triangles ABC and AEC, we readily
obtain

sin i = 
1

BC

AC AC

v τ= (10.1)

and

sin r = 
2

AE

AC AC

v τ= (10.2)

where i and r are the angles of incidence and refraction,
respectively. Thus we obtain

1

2

sin

sin

i v

r v
= (10.3)

From the above equation, we get the important result
that if r < i (i.e., if the ray bends toward the normal), the
speed of the light wave in the second medium (v2) will be
less then the speed of the light wave in the first medium
(v

1
). This prediction is opposite to the prediction from

the corpuscular model of light and as later experiments
showed, the prediction of the wave theory is correct. Now,
if c represents the speed of light in vacuum, then,

1

1

c
n

v
= (10.4)

and

n
2
 = 

2

c

v
(10.5)

are known as the refractive indices of medium 1 and
medium 2, respectively. In terms of the refractive indices, Eq. (10.3) can
be written as

n1 sin i = n2 sin r (10.6)

This is the Snell’s law of refraction. Further, if  l
1
 and l

 2
 denote the

wavelengths of light in medium 1 and medium 2, respectively and if the
distance BC is equal to l

 1
 then the distance AE will be equal to l

 2
 (because

if the crest from B has reached C in time t, then the crest from A should
have also reached E in time t ); thus,

1 1

2 2

BC

AE

v

v

λ
λ

= =

or

1 2

1 2

v v

λ λ
= (10.7)

C
H

R
IS

T
IA

A
N

 H
U

Y
G

E
N

S
 (1

6
2
9
 –

 1
6
9
5
)

Christiaan HuygensChristiaan HuygensChristiaan HuygensChristiaan HuygensChristiaan Huygens
(1629 – 1695) (1629 – 1695) (1629 – 1695) (1629 – 1695) (1629 – 1695) Dutch
physicist, astronomer,
mathematician and the
founder of the wave
theory of light. His book,
Treatise on light, makes
fascinating reading even
today. He brilliantly
explained the double
refraction shown by the
mineral calcite in this
work in addition to
reflection and refraction.
He was the first to
analyse circular and
simple harmonic motion
and designed and built
improved clocks and
telescopes. He discovered
the true geometry of
Saturn’s rings.
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The above equation implies that when a wave gets refracted into a
denser medium (v

1
 > v

2
) the wavelength and the speed of propagation

decrease but the frequency  n (= v/l) remains the same.

10.3.2  Refraction at a rarer medium

We now consider refraction of a plane wave at a rarer medium, i.e.,

v
2
 > v

1
. Proceeding in an exactly similar manner we can construct a

refracted wavefront as shown in Fig. 10.5. The angle of refraction

will now be greater than angle of incidence; however, we will still have

n
1
 sin i = n

2
 sin r . We define an angle i

c
 by the following equation

2

1

sin c

n
i

n
= (10.8)

Thus, if i = i
c
 then sin r = 1 and r = 90°. Obviously, for i > i

c
, there can

not be any refracted wave. The angle i
c 
is known as the critical angle and

for all angles of incidence greater than the critical angle, we will not have
any refracted wave and the wave will undergo what is known as total

internal reflection. The phenomenon of total internal reflection and its

applications was discussed in Section 9.4.
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FIGURE 10.5 Refraction of a plane wave incident on a

rarer medium for which v
2
 > v

1
. The plane wave bends

away from the normal.

10.3.3  Reflection of a plane wave by a plane surface

We next consider a plane wave AB incident at an angle i on a reflecting

surface MN. If v represents the speed of the wave in the medium and if t
represents the time taken by the wavefront to advance from the point B
to C then the distance

BC =  vt

In order to construct the reflected wavefront we draw a sphere of
radius vt from the point A as shown in Fig. 10.6. Let CE represent the

tangent plane drawn from the point C to this sphere. Obviously

AE = BC = vt
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FIGURE 10.6 Reflection of a plane wave AB by the reflecting surface MN.

AB and CE represent incident and reflected wavefronts.

FIGURE 10.7 Refraction of a plane wave by (a) a thin prism, (b) a convex lens.
(c) Reflection of a plane wave by a concave mirror.

If we now consider the triangles EAC and BAC we will find that they
are congruent and therefore, the angles i and r (as shown in Fig. 10.6)
would be equal. This is the law of reflection.

Once we have the laws of reflection and refraction, the behaviour of
prisms, lenses, and mirrors can be understood. These phenomena were
discussed in detail in Chapter 9 on the basis of rectilinear propagation of

light. Here we just describe the behaviour of the wavefronts as they
undergo reflection or refraction. In Fig. 10.7(a) we consider a plane wave
passing through a thin prism. Clearly, since the speed of light waves is

less in glass, the lower portion of the incoming wavefront (which travels
through the greatest thickness of glass) will get delayed resulting in a tilt
in the emerging wavefront as shown in the figure. In Fig. 10.7(b) we

consider a plane wave incident on a thin convex lens; the central part of
the incident plane wave traverses the thickest portion of the lens and is
delayed the most. The emerging wavefront has a depression at the centre

and therefore the wavefront becomes spherical and converges to the point
F which is known as the focus. In Fig. 10.7(c) a plane wave is incident on
a concave mirror and on reflection we have a spherical wave converging

to the focal point F. In a similar manner, we can understand refraction
and reflection by concave lenses and convex mirrors.

From the above discussion it follows that the total time taken from a

point on the object to the corresponding point on the image is the same
measured along any ray. For example, when a convex lens focusses light
to form a real image, although the ray going through the centre traverses

a shorter path, but because of the slower speed in glass, the time taken
is the same as for rays travelling near the edge of the lens.
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10.4  COHERENT AND INCOHERENT

ADDITION OF WAVES

In this section we will discuss the

interference pattern produced by the

superposition of two waves. You may recall

that we had discussed the superposition

principle in Chapter 14 of your Class XI

textbook. Indeed the entire field of

interference is based on the superposition

principle according to which at a particular

point in the medium, the resultant

displacement produced by a number of

waves is the vector sum of the displace-

ments produced by each of the waves.

Consider two needles S
1
 and S

2
 moving

periodically up and down in an identical

fashion in a trough of water [Fig. 10.8(a)]. They produce two water waves,

and at a particular point, the phase difference between the displacements

produced by each of the waves does not change with time; when this

happens the two sources are said to be coherent.  Figure 10.8(b) shows

the position of crests (solid circles) and troughs (dashed circles) at a given

instant of time. Consider a point P for which

S
1
 P = S

2
 P

E
X

A
M

P
L
E
 1

0
.1

Example 10.1

(a) When monochromatic light is incident on a surface separating
two media, the reflected and refracted light both have the same
frequency as the incident frequency. Explain why?

(b) When light travels from a rarer to a denser medium, the speed
decreases. Does the reduction in speed imply a reduction in the
energy carried by the light wave?

(c) In the wave picture of light, intensity of light is determined by the
square of the amplitude of the wave. What determines the intensity
of light in the photon picture of light.

Solution
(a) Reflection and refraction arise through interaction of incident light

with the atomic constituents of matter. Atoms may be viewed as

oscillators, which take up the frequency of the external agency

(light) causing forced oscillations. The frequency of light emitted by

a charged oscillator equals its frequency of oscillation. Thus, the

frequency of scattered light equals the frequency of incident light.

(b) No. Energy carried by a wave depends on the amplitude of the

wave, not on the speed of wave propagation.

(c) For a given frequency, intensity of light in the photon picture is

determined by the number of photons crossing an unit area per

unit time.

(a) (b)

FIGURE 10.8 (a) Two needles oscillating in

phase in water represent two coherent sources.
(b) The pattern of displacement of water

molecules at an instant on the surface of water

showing nodal N (no displacement) and
antinodal A (maximum displacement) lines.
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Since the distances S
1
 P and S

2
 P are equal, waves from S

1
 and S

2
 will

take the same time to travel to the point P and waves that emanate from

S
1
 and S

2
 in phase will also arrive, at the point P, in phase.

Thus, if the displacement produced by the source S
1
 at the point P is

given by

y
1
 = a cos wt

then, the displacement produced by the source S
2
 (at the point P) will

also be given by

y
2
 = a cos wt

Thus, the resultant of displacement at P would be given by

y = y
1
 + y

2
 = 2 a cos wt

Since the intensity is proportional to the square of the amplitude, the

resultant intensity will be given by

I = 4 I
0

where I
0
 represents the intensity produced by each one of the individual

sources; I
0
 is proportional to a2. In fact at any point on the perpendicular

bisector of S
1
S

2
, the intensity will be 4I

0
. The two sources are said to

interfere constructively and we have what is referred to as constructive

interference. We next consider a point Q [Fig. 10.9(a)]
for which

S
2
Q –S

1
Q = 2l

The waves emanating from S
1 

will arrive exactly two cycles earlier
than the waves from S

2
 and will again be in phase [Fig. 10.9(a)]. Thus, if

the displacement produced by  S
1 
 is given by

y
1
 = a cos wt

then the displacement produced by  S
2 
 will be given by

y
2
 = a cos (wt – 4p)  =  a cos wt

where we have used the fact that a path difference of 2l corresponds to a
phase difference of 4p. The two displacements are once again in phase
and the intensity will again be 4 I

0
 giving rise to constructive interference.

In the above analysis we have assumed that the distances S
1
Q and S

2
Q

are much greater than d (which represents the distance between S
1
 and

S
2
) so that although S

1
Q and S

2
Q are not equal, the amplitudes of the

displacement produced by each wave are very nearly the same.
We next consider a point R [Fig. 10.9(b)] for which

S
2
R – S

1
R = –2.5l

The waves emanating from S
1 
will arrive exactly two and a half cycles

later than the waves from S
2
  [Fig. 10.10(b)]. Thus if the displacement

produced by  S
1 
 is given by

y
1
 = a cos wt

then the displacement produced by  S
2 
 will be given by

y
2
 = a cos (wt + 5p)  = – a cos wt

FIGURE 10.9

(a) Constructive
interference at a

point Q for which the

path difference is 2l.
(b) Destructive

interference at a

point R for which the
path difference is

2.5 l .

FIGURE 10.10 Locus
of points for which

S
1
P – S

2
P is equal to

zero, ±l, ± 2l, ± 3l .
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where we have used the fact that a path difference of 2.5l corresponds to

a phase difference of 5p. The two displacements are now out of phase

and the two displacements will cancel out to give zero intensity. This is

referred to as destructive interference.

To summarise: If we have two coherent sources S
1
 and S

2
 vibrating

in phase, then for an arbitrary point P whenever the path difference,

S
1
P  ~ S

2
P =  nl     (n = 0, 1, 2, 3,...) (10.9)

we will have constructive interference and the resultant intensity will be

4I
0
; the sign ~ between  S

1
P and S

2
 P represents the difference between

S
1
P and S

2
 P. On the other hand, if the point P is such that the path

difference,

S
1
P  ~ S

2
P = (n+

1

2
) l     (n = 0, 1, 2, 3, ...) (10.10)

we will have destructive interference and the resultant intensity will be

zero. Now, for any other arbitrary point G (Fig. 10.10) let the phase

difference between the two displacements be f. Thus, if the displacement

produced by S
1
 is given by

y
1
 = a cos wt

then, the displacement produced by S
2
 would be

y
2
 = a cos (wt + f )

and the resultant displacement will be given by

y = y
1 
+ y

2

   = a [cos wt + cos (wt +f )]

   = 2 a cos (f/2) cos (wt + f/2)

The amplitude of the resultant displacement is 2a cos (f/2) and
therefore the intensity at that point will be

I = 4 I
0
 cos2 (f/2) (10.11)

If f = 0, ± 2 p, ± 4 p,… which corresponds to the condition given by
Eq. (10.9) we will have constructive interference leading to maximum
intensity. On the other hand, if f = ± p, ± 3p, ± 5p … [which corresponds to
the condition given by Eq. (10.10)] we will have destructive interference
leading to zero intensity.

Now if the two sources are coherent (i.e., if the two needles are going
up and down regularly) then the phase difference f at any point will not
change with time and we will have a stable interference pattern; i.e., the
positions of maxima and minima will not change with time. However, if
the two needles do not maintain a constant phase difference, then the
interference pattern will also change with time and, if the phase difference
changes very rapidly with time, the positions of maxima and minima will
also vary rapidly with time and we will see a “time-averaged” intensity
distribution. When this happens, we will observe an average intensity
that will be given by

I = 2 I
0

(10.12)

at all points.
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When the phase difference between the two vibrating sources changes
rapidly with time, we say that the two sources are incoherent and when
this happens the intensities just add up. This is indeed what happens
when two separate light sources illuminate a wall.

10.5 INTERFERENCE OF LIGHT WAVES AND YOUNG’S
EXPERIMENT

We will now discuss interference using light waves. If

we use two sodium lamps illuminating two pinholes
(Fig. 10.11) we will not observe any interference fringes.
This is because of the fact that the light wave emitted

from an ordinary source (like a sodium lamp) undergoes
abrupt phase changes in times of the order of 10–10

seconds. Thus the light waves coming out from two

independent sources of light will not have any fixed
phase relationship and would be incoherent, when this
happens, as discussed in the previous section, the

intensities on the screen will add up.
The British physicist Thomas Young used an

ingenious technique to “lock” the phases of the waves

emanating from S
1
 and S

2
. He made two pinholes S

1

and S
2
 (very close to each other) on an opaque screen [Fig. 10.12(a)].

These were illuminated by another pinholes that was in turn, lit by a

bright source. Light waves spread out from S and fall on both S
1
 and S

2
.

S
1
 and S

2
 then behave like two coherent sources because light waves

coming out from S
1
 and S

2
 are derived from the same original source

and any abrupt phase change in S will manifest in exactly similar phase
changes in the light coming out from S

1
 and S

2
. Thus, the two sources S

1

and S
2
 will be locked in phase; i.e., they will be coherent like the two

vibrating needle in our water wave example [Fig. 10.8(a)].
The spherical waves emanating from S

1
 and S

2
 will produce

interference fringes on the screen GG¢, as shown in Fig. 10.12(b). The

positions of maximum and minimum intensities can be calculated by
using the analysis given in Section 10.4.

(a) (b)

FIGURE 10.12 Young’s arrangement to produce interference pattern.

FIGURE 10.11 If two sodium
lamps illuminate two pinholes

S
1
 and S

2
, the intensities will add

up and no interference fringes will
be observed on the screen.
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FIGURE 10.13 Computer generated fringe pattern produced by two point

source S
1
 and S

2
 on the screen GG¢ (Fig. 10.12); d = 0.025 mm, D = 5 cm

and l = 5 × 10–5 cm.) (Adopted from OPTICS by A. Ghatak, Tata McGraw

Hill Publishing Co. Ltd., New Delhi, 2000.)

Thomas Young
(1773 – 1829) English
physicist, physician and

Egyptologist. Young worked

on a wide variety of
scientific problems, ranging

from the structure of the eye

and the mechanism of
vision to the decipherment

of the Rosetta stone. He

revived the wave theory of
light and recognised that

interference phenomena

provide proof of the wave
properties of light.
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We will have constructive interference resulting in a bright

region when 
xd

D
 = nl. That is,

x = x
n
 = 

n D

d

λ
; n = 0, ± 1, ± 2, ...                    (10.13)

On the other hand, we will have destructive

interference resulting in a dark region when 
xd

D
= (n+

1

2
) l

that is

x = x
n
 = (n+

1

2
) ; 0, 1, 2

D
n

d


   (10.14)

Thus dark and bright bands appear on the screen,
as shown in Fig. 10.13. Such bands are called fringes.
Equations (10.13) and (10.14) show that dark and
bright fringes are equally spaced.

10.6  DIFFRACTION

If we look clearly at the shadow cast by an opaque object, close to the

region of geometrical shadow, there are alternate dark and bright regions

just like in interference. This happens due to the phenomenon of

diffraction. Diffraction is a general characteristic exhibited by all types of

waves, be it sound waves, light waves, water waves or matter waves. Since

the wavelength of light is much smaller than the dimensions of most

obstacles; we do not encounter diffraction effects of light in everyday
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observations. However, the finite resolution of our eye or of optical

instruments such as telescopes or microscopes is limited due to the

phenomenon of diffraction. Indeed the colours that you see when a CD is

viewed is due to diffraction effects. We will now discuss the phenomenon

of diffraction.

10.6.1  The single slit

In the discussion of Young’s experiment, we stated that a single narrow

slit acts as a new source from which light spreads out. Even before Young,

early experimenters – including Newton – had noticed that light spreads

out from narrow holes and slits. It seems to turn around corners and

enter regions where we would expect a shadow. These effects, known as

diffraction, can only be properly understood using wave ideas. After all,

you are hardly surprised to hear sound

waves from someone talking around a corner!

When the double slit in Young’s

experiment is replaced by a single narrow

slit (illuminated by a monochromatic

source), a broad pattern with a central bright

region is seen. On both sides, there are

alternate dark and bright regions, the

intensity becoming weaker away from the

centre (Fig. 10.15). To understand this, go

to Fig. 10.14, which shows a parallel beam

of light falling normally on a single slit LN of

width a. The diffracted light goes on to meet

a screen. The midpoint of the slit is M.

A straight line through M perpendicular

to the slit plane meets the screen at C. We want the

intensity at any point P on the screen. As before, straight

lines joining P to the different points L,M,N, etc., can be

treated as parallel, making an angle q with the

normal MC.

The basic idea is to divide the slit into much smaller

parts, and add their contributions at P with the proper

phase differences. We are treating different parts of the

wavefront at the slit as secondary sources. Because the

incoming wavefront is parallel to the plane of the slit, these

sources are in phase.

It is observed that the intensity has a central

maximum at q = 0 and other secondary maxima at q l

(n+1/2) l/a, which go on becoming weaker and weaker

with increasing n. The minima (zero intensity) are at q l

nl/a, n = ±1, ±2, ±3, ....

The photograph and intensity pattern corresponding

to it is shown in Fig. 10.15.

There has been prolonged discussion about

difference between intereference and diffraction among

FIGURE 10.14  The geometry of path
differences for diffraction by a single slit.

FIGURE 10.15 Intensity
distribution and photograph of

fringes due to diffraction
at single slit.
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FIGUREFIGUREFIGUREFIGUREFIGURE 10.16 10.16 10.16 10.16 10.16
Holding two blades to
form a single slit. A
bulb filament viewed
through this shows

clear diffraction
bands.

scientists since the discovery of these phenomena. In this context, it is

interesting to note what Richard Feynman***** has said in his famous

Feynman Lectures on Physics:

No one has ever been able to define the difference between

interference and diffraction satisfactorily. It is just a question

of usage, and there is no specific, important physical difference

between them. The best we can do is, roughly speaking, is to

say that when there are only a few sources, say two interfering

sources, then the result is usually called interference, but if there

is a large number of them, it seems that the word diffraction is

more often used.

In the double-slit experiment, we must note that the pattern on the

screen is actually a superposition of single-slit diffraction from each slit

or hole, and the double-slit interference pattern.

10.6.2  Seeing the single slit diffraction pattern10.6.2  Seeing the single slit diffraction pattern10.6.2  Seeing the single slit diffraction pattern10.6.2  Seeing the single slit diffraction pattern10.6.2  Seeing the single slit diffraction pattern

It is surprisingly easy to see the single-slit diffraction pattern for oneself.

The equipment needed can be found in most homes –– two razor blades

and one clear glass electric bulb preferably with a straight filament. One

has to hold the two blades so that the edges are parallel and have a

narrow slit in between. This is easily done with the thumb and forefingers

(Fig. 10.16).

Keep the slit parallel to the filament, right in front of the eye. Use

spectacles if you normally do. With slight adjustment of the width of

the slit and the parallelism of the edges, the pattern should be seen

with its bright and dark bands. Since the position of all the bands

(except the central one) depends on wavelength, they will show some

colours. Using a filter for red or blue will make the fringes clearer.

With both filters available, the wider fringes for red compared to blue

can be seen.

In this experiment, the filament plays the role of the first slit S in

Fig. 10.15. The lens of the eye focuses the pattern on the screen (the

retina of the eye).

With some effort, one can cut a double slit in an aluminium foil with

a blade. The bulb filament can be viewed as before to repeat Young’s

experiment. In daytime, there is another suitable bright source subtending

a small angle at the eye. This is the reflection of the Sun in any shiny

convex surface (e.g., a cycle bell). Do not try direct sunlight – it can damage

the eye and will not give fringes anyway as the Sun subtends an angle

of (1/2)°.

In interference and diffraction, light energy is redistributed. If it

reduces in one region, producing a dark fringe, it increases in another

region, producing a bright fringe. There is no gain or loss of energy,

which is consistent with the principle of conservation of energy.

***** Richard Feynman was one of the recipients of the 1965 Nobel Prize in Physics
for his fundamental work in quantum electrodynamics.
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10.7  POLARISATION

Consider holding a long string that is held horizontally, the other end of
which is assumed to be fixed. If we move the end of the string up and
down in a periodic manner, we will generate a wave propagating  in the
+x direction (Fig. 10.17). Such a wave could be described by the following
equation

FIGURE 10.17 (a) The curves represent the displacement of a string at
t = 0 and at t = Dt, respectively when a sinusoidal wave is propagating

in the +x-direction. (b) The curve represents the time variation

of the displacement at x = 0 when a sinusoidal wave is propagating
in the +x-direction. At  x = Dx, the time variation of the

displacement will be slightly displaced to the right.

y (x,t ) = a sin (kx – wt) (10.15)

where a and w (= 2pn ) represent the amplitude and the angular frequency

of the wave, respectively; further,

2

k
λ π= (10.16)

represents the wavelength associated with the wave. We had discussed

propagation of such waves in Chapter 14 of Class XI textbook. Since the

displacement (which is along the y direction) is at right angles to the

direction of propagation of the wave, we have what is known as a

transverse wave. Also, since the displacement is in the y direction, it is

often referred to as a y-polarised wave. Since each point on the string

moves on a straight line, the wave is also referred to as a linearly polarised
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wave. Further, the string always remains confined to the x-y plane and

therefore it is also referred to as a plane polarised wave.

In a similar manner we can consider the vibration of the string in the

x-z plane generating a z-polarised wave whose displacement will be given

by

z (x,t ) = a sin (kx – wt ) (10.17)

It should be mentioned that the linearly polarised waves [described

by Eqs. (10.15) and (10.17)] are all transverse waves; i.e., the

displacement of each point of the string is always at right angles to the

direction of propagation of the wave. Finally, if the plane of vibration of

the string is changed randomly in very short intervals of time, then we

have what is known as an unpolarised wave. Thus, for an unpolarised

wave the displacement will be randomly changing with time though it

will always be perpendicular to the direction of propagation.

Light waves are transverse in nature; i.e., the electric field associated

with a propagating light wave is always at right angles to the direction of

propagation of the wave. This can be easily demonstrated using a simple

polaroid. You must have seen thin plastic like sheets, which are called

polaroids. A polaroid consists of long chain molecules aligned in a

particular direction. The electric vectors (associated with the propagating

light wave) along the direction of the aligned molecules get absorbed.

Thus, if an unpolarised light wave is incident on such a polaroid then

the light wave will get linearly polarised with the electric vector oscillating

along a direction perpendicular to the aligned molecules; this direction

is known as the pass-axis of the polaroid.

Thus, if the light from an ordinary source (like a sodium lamp) passes

through a polaroid sheet P
1,
 it is observed that its intensity is reduced by

half. Rotating P
1
 has no effect on the transmitted beam and transmitted

intensity remains constant. Now, let an identical piece of polaroid P
2
 be

placed before P
1
. As expected, the light from the lamp is reduced in

intensity on passing through P
2
 alone. But now rotating P

1
 has a dramatic

effect on the light coming from P
2
. In one position, the intensity transmitted

by P
2
 followed by P

1
 is nearly zero. When turned by 90° from this position,

P
1
 transmits nearly the full intensity emerging from P

2
 (Fig. 10.18).

The experiment at figure 10.18 can be easily understood by assuming

that light passing through the polaroid P
2
 gets polarised along  the pass-

axis of  P
2
. If the pass-axis of  P

2 
makes an angle q with the pass-axis of

P
1
, then  when the polarised beam passes through the polaroid P

2
, the

component  E cos q  (along the pass-axis of P
2
) will pass through P

2
.

Thus, as we rotate the polaroid P
1 
(or P

2
), the intensity will vary as:

I = I
0
 cos2

q (10.18)

where I
0
 is the intensity of the polarized light after passing through

P
1
.
 
This is known as Malus’ law. The above discussion shows that the
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FIGURE 10.18 (a) Passage of light through two polaroids P
2
 and P

1
. The

transmitted fraction falls from 1 to 0 as the angle between them varies
from  0° to 90°. Notice that the light seen through a single polaroid

P
1 does not vary with angle. (b) Behaviour of the electric vector

when light passes through two polaroids. The transmitted
polarisation is the component parallel to the polaroid axis.

The double arrows show the oscillations of the electric vector.

intensity coming out of a single polaroid is half of the incident intensity.

By putting a second polaroid, the intensity can be further controlled
from 50% to zero of the incident intensity by adjusting the angle between
the pass-axes of two polaroids.

Polaroids can be used to control the intensity, in sunglasses,
windowpanes, etc. Polaroids are also used in photographic cameras and
3D movie cameras.

 E
X

A
M

P
L
E 1

0
.2

Example 10.2 Discuss the intensity of transmitted light when a

polaroid sheet is rotated between two crossed polaroids?

Solution Let I
0
 be the intensity of polarised light after passing through

the first polariser P
1
. Then the intensity of light after passing through

second polariser P
2
 will be

2
0cosI I θ= ,

where q is the angle between pass axes of P
1
 and P

2
. Since P

1
 and P

3

are crossed the angle between the pass axes of P
2
 and P

3 
will be

(p/2–q ). Hence the intensity of light emerging from P
3
 will be

I I= 



0

2 2

2
cos cosθ θ

π
–

  = I
0
 cos2

q  sin2
q =(I

0
/4) sin22q

Therefore, the transmitted intensity will be maximum when q = p/4.
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POINTS TO PONDER

1. Waves from a point source spread out in all directions, while light was
seen to travel along  narrow  rays. It required the insight and experiment

of Huygens, Young and Fresnel to understand how a wave theory could

explain all aspects of the behaviour of light.

2. The crucial new feature of waves is interference of amplitudes from different

sources which can be both constructive and destructive, as shown in

Young’s experiment.

3. Diffraction phenomena define the limits of ray optics. The limit of the

ability of microscopes and telescopes to distinguish very close objects is

set by the wavelength of light.

4. Most interference and diffraction effects exist even for longitudinal waves

like sound in air. But polarisation phenomena are special to transverse

waves like light waves.

SUMMARY

1. Huygens’ principle tells us that each point on a wavefront is a source

of secondary waves, which add up to give the wavefront at a later time.

2. Huygens’ construction tells us that the new wavefront is the forward

envelope of the secondary waves. When the speed of light is
independent of direction, the secondary waves are spherical. The rays

are then perpendicular to both the wavefronts and the time of travel

is the same measured along any ray. This principle leads to the well

known laws of reflection and refraction.

3. The principle of superposition of waves applies whenever two or more
sources of light illuminate the same point. When we consider the
intensity of light due to these sources at the given point, there is an
interference term in addition to the sum of the individual intensities.
But this term is important only if it has a non-zero average, which
occurs only if the sources have the same frequency and a stable phase
difference.

4. Young’s double slit of separation d gives equally spaced interference
fringes.

5. A single slit of width a gives a diffraction pattern with a central

maximum. The intensity falls to zero at angles of 
2

, ,
a a

λ λ± ±  etc.,

with successively weaker secondary maxima in between.

6. Natural light, e.g., from the sun is unpolarised. This means the electric
vector takes all possible directions in the transverse plane, rapidly
and randomly, during a measurement. A polaroid transmits only one
component (parallel to a special axis). The resulting light is called
linearly polarised or plane polarised. When this kind of light is viewed
through a second polaroid  whose axis turns through 2p, two maxima
and minima of intensity are seen.
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EXERCISES

10.1 Monochromatic light of wavelength 589 nm is incident from air on a

water surface. What are the wavelength, frequency and speed of

(a) reflected, and (b) refracted light?  Refractive index of water is

1.33.

10.2 What is the shape of the wavefront in each of the following cases:

(a) Light diverging from a point source.

(b) Light emerging out of a convex lens when a point source is placed

at its focus.

(c) The portion of the wavefront of light from a distant star intercepted

by the Earth.

10.3 (a) The refractive index of glass is 1.5. What is the speed of light in

glass? (Speed of light in vacuum is 3.0 × 108 m s–1)

(b) Is the speed of light in glass independent of the colour of light?  If

not, which of  the two colours red and violet travels slower in a

glass prism?

10.4 In a Young’s double-slit experiment, the slits are separated by

0.28 mm and the screen is placed 1.4 m away. The distance between

the central bright fringe and the fourth bright fringe is measured

to be 1.2 cm. Determine the wavelength of light used in the

experiment.

10.5 In Young’s double-slit experiment using monochromatic light of

wavelength l, the intensity of light at a point on the screen where

path difference is l, is K units. What is the intensity of light at a

point where path difference is l/3?

10.6 A beam of light consisting of two wavelengths, 650 nm and 520 nm,

is used to obtain interference fringes in a Young’s double-slit

experiment.

(a) Find the distance of the third bright fringe on the screen from

the central maximum for wavelength 650 nm.

(b) What is the least distance from the central maximum where the

bright fringes due to both the wavelengths coincide?
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